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Abstract. A theory for long-term prediction of laterally loaded piles in a hereditary-elastic medium is presented. A 
mixed formulation approach with the aid of calculus of variations ensures continuity of pile displacements, bending 
moments and soil reactions. Finally, an asymptotic estimate of the pile behavior for very long time (t--->~) is 
obtained using a fractional exponential operator derived from pile tests. 

1. Introduction 

Pile foundations in frozen soils are increasingly in demand, because in addition to above- 
graded heated structures and bridge abutments their use is now adopted for the construction 
of oil pipelines and offshore drilling platforms. Three firmly established valid approaches to 
predict the behavior of laterally loaded piles are: Modulus of Subgrade Reaction Method 
(Hetenyi [5], Nixon [10], Neukirchner and Nixon [11], Neukirchner [12]), Elastic Continuum 
Approach (Poulos [15]) and Pressure Deflection-Curve Method (Ladanyi [9], Rowley, 
Watson and Ladanyi [20, 21]), respectively. In frozen soils the first and the third method are 
most widely utilized. Furthermore, in frozen soils until now, the numerical solutions for 
laterally loaded piles in permafrost have been obtained by means of finite difference 
techniques applied to a coupled system of partial differential equations. Based on a Winkler 
model, together with a secondary creep Law, Nixon [10] obtained displacements, shear 
stresses and bending moments along the pile length by employing classical relationships for 
bending of beams. In a recent study, the authors (Foriero and Ladanyi [3]) analyzed the 
same problem by the finite element technique. The reaction redistribution along the pile 
length was determined using a non-linear creep law and the concept of non-stationarity was 
introduced. 

In this paper, a variational method is used to analyze laterally loaded piles in frozen soils 
with consideration of stationary creep (Foriero and Ladanyi [4]). For non-stationary creep, 
the use of numerical techniques is inevitable and one can consult the above mentioned study 
(Foriero and Ladanyi [3]). 

2. Variational methods 

Classical variational methods provide effective approximate solutions to physical problems 
(Oden and Reddy [13], Owen and Hinton [14], Reddy [19], Zienkiewics [22]). The involved 
formulative and computational efforts are significantly less than those of the finite difference 
and finite element methods. In addition, these approximate solutions are continuous 
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functions of position (on the domain), as opposed to piecewise continuous or discretely 
defined functions obtained in the finite difference and finite element methods. 

For a laterally loaded pile in a hereditary elastic medium, two variational principles are 
applicable: namely the principle of minimum potential energy (involving displacements) and 
the principle of minimum complementary energy (involving stresses) (Reissner [17, 18]). In 
the former, displacements are primary variables (essential conditions) and stresses are 
secondary variables (natural conditions), whereas in the complementary energy principle the 
reverse occurs. In the literature (Foriero and Ladanyi [3], Klein [8], Oden and Reddy [13]), 
both variational principles have been effective for obtaining approximate solutions of 
boundary value problems. However, in the approximate solutions the primary variables are 
continuous while the secondary variables are not. 

The objective herein is to utilize the calculus of variations to obtain approximate solutions 
in such manner that no preference is given to either of the two kinds of essential conditions 
(displacement or stresses) occurring in the theory. A variational problem for laterally loaded 
piles in permafrost is formulated wherein displacements, moments and reactions occur as 
primary variables (essential conditions). This mixed type formulation was first applied by 
Reissner [17, 18] in elasticity and thus, by analogy, the method is valid for laterally loaded 
piles as well. 

3. Laterally loaded piles in a hereditary-elastic medium 

The differential equation for time-independent displacement w(x) of a pile in an elastic 
medium is written as (Hetenyi [5]) 

D2(EIDaw)+ k w = q  (O<-x<~L, D=d/dx ) ,  (3.1) 

where k is the reaction modulus of the soil in units of stress and q is any disturbance (load) 
acting on the pile. This latter quantity for the problem dealt with in this article does not 
stand for an L2[0, L]-function, but merely for the linear combination of the Dirac-delta 
functional and its derivative 

q : F(O)3(x +O)-M(O)8'(x +0),  (3.2) 

whose domain of definition is at most the space of continuously differentiable functions on 
[0, L]. If one assumes the pile has constant cross section and rigidity modulus E1 in- 
dependent of depth (constant El) and is embedded in a viscoelastic medium with modulus k, 
then k must be replaced by its viscoelastic modulus operator k ( l -  H), where 

~ t = h(t - r)f(~-) d r .  (3.3) (If)(t) =-f(t), (Hf)(t) =- (h*f)(t) =0 

Thus equation (3.1) for time-dependent displacement w(x, t) is rewritten as 

EI(D~w) + k ( I -  H)w = q (O<~x<~ L, D 1 ~3/0x)  , (3.4) 

which is the bending equation of a pile embedded in a hereditary elastic medium satisfying 
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the fading memory and closed cycle conditions (Rabotnov [16]). Inherent to expression (3.4) 
is the fact that the pile displacement at any level is related to global reaction via 

w = - k - l ( I  + C)p  or p = - k ( 1 -  H ) w ,  (3.5) 

where C is a convolution operator with kernel c(t) (Doetsch [2]). The first relation in (3.5) is 
explicitly 

fr t 
w(x,  t) = - k - l p ( x ,  t) - k -1 c(t - r )p(x ,  ~;) d~ 

=0 
(3.6) 

and in terms of convolution becomes 

w(x,  t) = - k - l p ( x ,  t) - k - l ( c  * p(x ,  "))(t). (3.7) 

The analysis begins by defining a sign convention for displacements, reactions and 
moments (Fig. 1). A Reissner [17, 18] type functional is obtained thereafter by considering 
energy principles and is verified by taking the variation of the respective essential variables 
(i.e. the result yields the original integral equation (3.4)), where the variation with respect to 
p of the convolution integral of p(x ,  t) with respect to time t is excluded because of the 
fading memory condition. The problem therefore deals with solving for that specific function 
w(x,  t) which yields 

- M ( x ,  t)(D~w) + p(x ,  t )w(x ,  t) + ( 2 E I ) - ' ( M ( x ,  t)) 2 min J(w,  p ,  M)=- =o 

f/ c(t - r )p(x ,  r) dr  + t) )  + t) =o 

+ F(0)a(x + O)w(x, t) - M(0)a(x + 0)(DIw)(x, t)] dx: 

~(o) 

Fig. 1. Sign convention for laterally loaded piles. 
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= - h( t  - -c)w(x, r) d r  p (x ,  t) - k w ( x ,  t) k =0 

M(x ,  t ) =  El(D2aw)(x, t ) ,  

(D21w)(0+, t) = (D31w)(0+, t) = (DelW)(L-, t) = (D3~w)(L-, t) = 0}, (3.8) 

where w(x ,  t), M ( x ,  t) and p(x ,  t) are the essential or primary variables and the action of 
6(x  + 0) (modified Dirac delta functional) is defined by 

fx ~(x + Off(x) dx = f (O+) = f(O) ( f  ~ C[O, a], a > 0). (3.9) 
=0 

This modification of the Dirac delta functional is in consequence of the fact that forces and 
moments are applied infinitesimally close to the upper boundary of the pile (Fig. 1). It is 
assumed that no forces and moments act on the lower boundary - i.e. the pile is very long. 

The variational method is now applied as follows to Reissner functional (3.8), which 
functional incorporates the modified Dirac delta function as well as its derivative. A 
complete orthonormal family of functions derived from a self-adjoint homogeneous bound- 
ary value problem (Kamke [7, Chap. VIII]) must be constructed such that the homogeneous 
boundary conditions are compatible with the quantities w(0+, t) and (DlW)(0+, t) arising 
from the modified Dirac delta functional and its derivative respectively, as well as the 
homogeneous boundary conditions EI(D21w)(L - ,  t ) = 0  and EI(D31w)(L - ,  t )=0 .  This 
yields the self-adjoint differential equation 

D2(EIDEu)  - toEu = 0 (3.10) 

with linearly independent homogeneous boundary conditions (Kamke, [7, Chap. VIII]) 
(DEu)(0) = (D3u)(0) = (DEu)(L) = (D3u)(L) = 0. Via the substitution A 4 = (E I ) -aw  2, equa- 
tion (3.10) becomes 

D4u - / ~ 4 u  ~- 0 (3.11) 

with boundary conditions (DZu)(0)= (D3u)(0)= (Dau)(L)= (D3u)(L)= 0, which has so- 
lution 

u(x)  = a I e ~x + a 2 e -xx + a 3 cos(Ax) + 0/4 sin(Ax), (3.12) 

where al,  0/2, a3 and a 4 satisfy the four homogeneous equations 

 20001r1 1 1 
0 1 - 1  0 -1  a2 0 h 3 0 

0 0 A 2 0 e*L e -aL -cos(AL) -s in(AL) a3 
0 0 o ,~JL e*L -e-~L sin(AL) -cos(AL) 0/4 

(3.13) 

generated by the four linearly independent homogeneous boundary conditions. System 
(3.13) must possess a non-trivial solution for suitable h's, thus either A--0 or the determin- 
ant of the second 4 x 4 matrix A(A) from the left must be ze ro -  i.e. 

det(A(h)) = 4[-1 + cosh(hL) cos(hL)] = 0. (3.14) 
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This necessitates either A = 0 or cos(AL) = sech(AL) (A ¢ 0), which after row reduction (for 
A ¢ 0) applied to the system (3.13) leads to 

- 1 1~ sinh(AL) - sin(AL) 
1 0 0 [ - ~ +  2I. cosh(AL)---c-~s(A-L)}]" 

[1  1 { sinh(AL) - sin(AL) }] 
0 1 0 2 + 2 cosh(AL)---c~-s(-XL-) 

[ sinh( A L ) - s i n ( A L )  ] 
0 0 1 cosh(AL) cos(AL) 

_0 0 0 0 

oq 0 

~2i= 0 

a 3 0 

. a 4 - .  _0- 

(3.15) 

for A = A n (n a non-zero integer). These A n are the zeros of the meromorphic function 
sech(z) - cos(z) of the complex variable (z = x ÷ iy, i =- #-s]-), whose zeros A n are countably 
infinite and lie on the real axis with asymptotic behavior l i m l , l ~ [ A , L -  (n + 1/2)7r] = 0. 
The thus obtained A's are used to solve for the coefficients a~ (1 ~< i ~< 4), in particular 

%(n) = cosh(AnL ) - cos(AnL ) + sin(A~L) - sinh(A~L), 

0/2(/ ' / )  = C o S ( A n L  ) - cosh(AnL ) - sinh(AnL ) + sin(A~L), 

a 3 (n) = 2(sin( A~ L) - sinh( A n L ) ) ,  

a4(/l ) = 2(cosh(hnL) - cos(hnL)) .  

(3.16) 

and consequently 

un(x)=_%(n ) e ~.x + az(n)e  -~nx + a3(n)cos(Anx)+ a4(n)sin(Anx) (3.17) 

is an eigenfunction corresponding to the eigenvalue A n (n ~ 0) with geometric multiplicity 1 
for n ~0 .  Results Theorem 2.1 [1, Chapter 7], and [6, Chapters 8 and 9] imply that 

6n(x)  Ilunll- un(x) (n¢O), (3.18) 

where 

/ 1 L 1 1 [e2A.L _ l la,(n)2 + 2 [1 -- e-2~nLla,(n)2 Ilu ll --- lu"(x)I2dx= ;.  

1 1 
+ ~ [2LA~ + sin(2LA~)]o%(n) 2 + ~ [2LA~ - sin(2Lh~)]a4(n) 2 

eAn L + 2Lh.a~(n)%(n) + [ (cos(A.L) + sin(A~L)) - 1]a~(n)a3(n ) 

AnL • + [e ( s m ( h n L ) -  cos(hnL)) + 1]ai(n)a4(n ) 

+ [e-~"L(sin(hn L)  - cos(h~L)) + 1]a2(n)o%(n ) + [1 - e-~"L(cos(h~L) 

[ l -c°s(2A"L) ]%(n)a4(n)} (n#O),  + sin(A"L))]az(n)a4(n) + 2 (3.19) 

is an orthonormal system of functions corresponding to eigenvalues A n (n ¢ 0). 
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For eigenvalue ~'0 = 0  (singularity of product matrix in equation (3.13)), the general 
solution Uo(X ) = a o + alX + a2 x2 + a3 x3 of the homogeneous ordinary differential equation 
(3.10) must satisfy (D2u)(0) = ( D 3 u ) ( 0 )  = (D2u)(L) = ( D 3 u ) ( L )  = 0, hence a 2 = a 3 = 0 and 
U0(X ) = Ot 0 q- OtlX. Thus {th0(x) --- L -1/2, (I)0(x) = ( 3 L - l )  I/2 - (12L-3)1/2X} is an orthonormal 
basis of eigenfunctions corresponding to eigenvalue a = 0 with geometric multiplicity 2. This 
combined with relation (3.18) implies that 

[]~ : { . .  , ( ~ - n - l ( X ) ,  ~ b _ n ( X ) ,  • • • , ~ b _ l ( X  ) ,  ~ o ( X ) ,  O o ( X ) ,  ~ l ( X ) ,  • • • , ~)n(X), ( ~ n + l ( X ) ,  • .}  

(3.20) 

is an orthonormal basis of the Hilbert space L2[0 , L ] .  

Due to the nature of q as a linear contribution of the modified Dirac delta functional and 
its derivative (Equation 3.2), a Fourier series expansion of q in terms of the eigenfunctions 
of equation (3.10) leads to delicate questions concerning the convergence of the series. To 
circumvent this, Hilbert space methods for the Hilbert space L2[0, L] involving the eigen- 
values and the corresponding eigenfunctions of the self-adjoint differential equation must be 
resolved too. The Fourier series expansion via the orthonormal basis (3.20) of the space 
L2[0, L] for the L2[0 , L] function f is 

f ( x ) =  (f ,  Oo)Oo(X ) + ~ (f ,  ~b.)~b.(x), 
tl= --oo 

where 

( f , ¢ o )  = =o 

( f '  4 " )  = =o 

f(X)Oo(X ) dx ,  

f(x)qbn(x)dx (n Z). 
(3.21) 

This series expansion of f is uniformly convergent if f has continuous third derivative on 
[0, L] and satisfies homogeneous boundary conditions; otherwise, the equality holds almost 
everywhere (except on a set of Lebesgue measure 0) if f is an L2[0, L] function only. 

- 2  . Using orthonormal basis B of equation (3.20) and the fact that functions { A. thn(x): n ~ g 
and n # 0} form an orthonormal set of L2[0 , L ]  

)i - 2¢ t~"  - 2  ,t "~m "rm, I~n (~n) = ~mn ( m ,  n ;;~ O)  ( 3 . 2 2 )  

the Fourier series expansions of w(x, t), p(x,  t) and M(x, t) are 

oo 

w(x, t) = (w(. ,  t), qbo)¢o(X ) + ~ (w(., t), ~b.)~b.(x), (3.23) 
n=--oo 

p(x,  t) = (p( . ,  t), (I)o)dPo(X) + ~'~ (p( ' ,  t), ~b.)~b.(x), (3.24) 
n=--aa 

and 

M(x, t) : ~ '  (M(. ,  t), hn-2~b")An2~b"(x) (3.25) 
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fx L = F(x, t)f(x) dx (F(., t), f> 7o (3.26) 

and E ~=_~' stands for summation over all non-zero integers. Substituting Fourier expansions 
((3.23), (3.24) and (3.25)) into the Reissner functional J defined by Equation (3.8) and 
utilizing orthonormality of B in the Hilbert space L2[0, L] and relation (3.22)) reduce 
condition (3.8) to 

min{J(w, p , M ) =  - ~ '  12~(M(., t), 1;2d,">(w(', t), 4~,,> 
t t = - ~  

tt= -¢~ 

+ E I(P(', t), c£>{ 2 + (p(., t),~o>(C<p(',"),q~o>)(t) 
n= o~ 

+ 

z¢ 

+ F(O) ~. (w(', t), qbn>ckn(O) - M(O)(w(', t), O0>dPo(0) 
n=-~c 

- M(O) E < w(., t), ~°> ~ ' (0)  . 
n=--~e 

(p(., t), qSn>(C(p(.,. .), qb, >)(t)) + F(O)( w(., t), ~o>qbo(0) 

(3.27) 

Variation with respect to the sets of Fourier coefficients { ( w(., t), qb 0 ) ( w(', t), 05, ) (n E 7/), 
{p(. , t ) ,  @0) (P(', t), 4~n) (nE7/),  (M(., t) ,  A22qb ") (n~77, n~0 )}  ((3.23), (3.24) and 
(3.25)) of w(x, t), p(x, t) and M(x, t) in expression (3.27) of the Reissner functional J yields 
the following three sets of equations: 

(p( ' ,  t), *o> + F(0)~0(0) - M(0)~;(0) = 0, 

--h2n (M(',  t), h22qb;;> + (p( ' ,  t), ¢hn ) + F(0)~b,(0) - M(0)qb'(0) = 0 (n @ Z),  (3.28) 

1 
<w(., t), *o> + ~ [<p( ,  t), %> + (C<p(.,..), *o>)(t)l  = 0 ,  

1 
( w ( . , t ) , q 5 ) +  ~ [{p( . ,  t), q5 >+(C(p(. , . . ) ,~b,))( t)]=O (nET7) 

and 

2 1 -A ,  (w(., t), q5 > + ~ (M(', t), / ~ n 2 ~ )  = 0 (n E 7/, n ¢ 0),  

(3.29) 

(3.30) 

where for arbitrary suitable F(x, t) and f(x) 

fT t c ( t -  "c)( F(', r), f )  dr = (c * ( F( ' ," ) ,  f )  )(t) . (C(F( ' , " ) ,  f>)(t)= =o (3.31) 
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Because the operator C appearing in Equation (3.29) is a convolution integral operator, the 
- 2 . solutions for the Fourier coefficients of the functions ~o(X), 4,.(x) (n E 77) and A n ~b.(x) 

( n E Z ,  n # 0 )  are 

( p ( . ,  t), ~o ) = -[F(0)~o(0) - M(0)~;(0)I, 

1 
(w( . ,  t), qbo) = ~ [F(0)*o(0) - M(0)~o(0)]([I + Cll)( t) ,  

([ ]1) 
(p( ' , t) ,  ~ , ) -  EiA!+ k [F(O)qb,(O)- M(O)q~'(O)] I+ EIAnE-~In~ k C 1 (t) 

(n E 7/), 

(3.32) 

w(', t), ¢.)  - EIA 4 + k 
[F(0) ~b. (0) - M(0) ~b'(0)] 

- 1  

EIA4 C] [ I+  C]l)(t) (nET/) 

and 

( M ( ' ,  t ) ,  -2  ,, EIAZn 
An ~)n)-- EiA4nJr k 

( n E Z ,  n # O ) ,  

[F(O)~b.(O)- M(O)~b'(O)]([I + EIA4 C]-1[I+ C]l)(t) 
EIA n + k 

(3.33) 

where [ ]-1 denotes the inverse of the operator inside the brackets [ ]. Hence, w(x, t), 
p(x, t) and M(x, t) have the Fourier expansions 

w(x, t) = ~ [F (0 )~o (0  ) - M(0)~o(0 ) ] ( [ I  + C]l)( t)~o(X) + .=-o~ EIA~ + k 

([ ]1 ) 
EIA4" C [I + C]l (t)~On(X) (3.34) X [F(0)¢.(0) - M(0)~b'.(0)] I + EIA: + k 

k 
p(x, t )=  -[F(0)dPo(0 ) - M(0)¢~(0)]qbo(X)- .=-~ EIA4 + k [F(0)4~.(0) - M(0)4,'(0)I 

EIA4 C]-11)(t)q~n(X) (3.35) 
X ([ I + EIA 4n + k 

and 

E1 
M(x, t) : .:~'~-~ tz ."IA 4 + k [F(0)~bn(0) - M(0)~b'.(0)] 

EIA4 C]-I[I + C]l)(t)qb"(x). (3.36) 

The operator C, appearing in the Fourier expansions of w(x, t), p(x, t) and M(x, t) 
((3.34), (3.35) and (3.36)), respectively, is a scalar multiple of the fractional exponential 
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1 £ + i ~  
~ ( - / 3 ,  t) = ~ -i~ exp(zt)[z1+~ + fl]-1 dz 

_ t  ~ (-1)~[/3fl+~] 
: FTiTT; - ), (3.37) 

In the integral representation (3.37) the complex variable z = x + iy (i ~ V - ~ )  is taken 
over the straight line path in the complex plane from a -  i~ to a + ioc (a > 0), F(z) is the 
gamma function and - denotes asymptotic representation for large t. Thus C--  K.E~(-/3) 
with creep parameters,  a,  /3 and K to be determined from creep tests (discussed in a 
subsequent section of this publication). 

Since the operators I + C as well as [I + /xC]  1 in relations (3.34), (3.35) and (3.36) act 
on the constant function 1, one needs to use the formula 

1 fa a+i~ [.=..(--/3)l](t) = ~--~ i~ exp(zt)[z2+" +/3z]-1 dz 

1 t1+~ ~ (--1)"[/3tl+~] -n 
(3.38) 

with its accompanying asymptotic expansion for very large values of t. In consequence of 
relations C = KE~(- /3) ,  (3.37) and (3.38), the Fourier representations of w(x, t), p(x, t) and 
M(x, t) and their respective expansions (derived from the asymptotic expansions of the 
Fourier coefficients) for very large t, take the forms, accompanied by asymptotic expansions 
of the Fourier coefficients for t very large: 

1 
w(x, t) = ~ [F(0)@0(0 ) - M(0)qb0(0)](I + K E ,  (-/3))(t)¢o(X ) 

+ [F(0)¢. (0)  - M(0)¢ ' (0) ]  
. . . .  EIA: + k 

I ~- kK = (_/3 4 4 ]))(  
EIA'. + k "~ - [ E I A . , , ] / [ E I A .  + k t ) ,~ . (x)  

( );) 1 K _ Ktl+ ~ (_l)m(/3t l+,  - m  (I)0(X) 
-- ~ [F(0)qbo(0 ) -  M(0)¢0(0)] 1 + ~ :2 F(1 + [1 + a][1 m]) 

+ 1 ( 
EIA 4 + k [F(O)q~.(O) - M(0)~b'(0)] 1 + 

/ i =  - ~  

kK 
/3(ETA 4 + I,) + EIA4~ 

~e m 4 4 I+~ - m  ( - 1 )  ((/3 + [EIAnK]/[EIA" + k])t ) ) 
kK t '+~ 2 F - ( 1 T ~ ; a - ~  ~ n~]) ~bn(X ) (3.39) EIA 4 + k m=2 

k 
p(x, t) = -[F(0)qb0(0 ) - M(0)qb~(0)]dP0(x ) - ,=-~ EIA 4 + k [F(0)th,(0) - M(0)th'(0)] 

4 
E I A  n K 

I 
EIA 4 + k 

4 ) =-o(-~ -[EIAn,,]/[EIA~ + k]) (t)+.(x) 
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_ [F(O)dPo(O ) - M(O)Oo(O)]dPo(X ) 

k 

. . . .  EI1a + k 

EI~4. K 

[F(0)~b.(0) - M(0)~b'(0)] 1 - /3(EIA 4 + k)  + EIA~K 

+ 
4 EIA ~ K 

EIA 4 + k 

t 1+~ ~ (--1)m((/3 +[EIA4K]/[EIA 4 +k])tl+=)-m\ 
m=2 F-(-l ~ - ~  ~ mD )~n(X) 

and 

E1 
M(x ,  t) = .=-~ EIA 4 + k [F(0)~b.(0) - M(0)~ ' (0) I  

x 1 + EIA4 " + k ~ ( - / 3  - [Elf fK]/[EIA4" + k]) ( t )6" (x )  

E1 ( kK 
n=-~ ~ EIA 4 + k [F(0)~b,(0) - M(0)~b',(0)] 1 +/3(EIA 4 + k)  + EIA4,K 

4 4 l+a -rn 
kK t 1+~ E ( - 1 ) m ( ( / 3 + [ E I A " K I / [ E I A " + ~  l ) t  ) ) " 

EIA 4 + k m=2 F - O T ~  ~ - - ~  m] ff)n(X) " 

(3.40) 

(3.41) 

4. Direct determination of the parameters of the fractional exponential creep kernel from a 
pile test 

The pile head displacement e(t) as function of time has representation in terms of the 
fractional exponential function 

e(t) = e0(1 + = K_~( - /3 )1 )  (4.1) 

with parameters e0, K, a and /3 to be determined from creep tests (Rabotnov [16]). One 
ascertains the four parameters e0, K, a and /3 from an experimental curve after Laplace 
transforming (Doetsch [2]) expression (4.1) 

K ) (4.2) • ( s ) = e  0 1 + s 1 + . + / 3  " 

Following a procedure of [16, Chap. III], one calculates the function ~(s )  in the form 

= e(t) e -s' dt  (4.3) q~(s) s =o 

and determines optimum approximation-parameters e0, K, a and fl via least square mini- 
mization (of a suitable evaluation function, defined later). 

This procedure is applied to the pile test results obtained at Dawson City (1973) [9]. 
Initially, one tabulates e(t)-values e i = e(ti) for certain t-values t i (1 <~i~  < n) for pile-test 
results (Table l(a)), where t n = T is the largest t for which the value e(t) is known. Then 
integral (4.3) is rewritten as 
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Table 1. Tabulation of soil parameters 

Dawson City 
S-2-L pile 

(a) Test results (b) Laplace transformed results (c) Optimal soil parameters 

t(h) e(t) (mm) sr *(s,) 

0 2.70 0.05 5.6263 
2 4.17 0.06 5.5125 
4 4.72 0.07 5.4117 
6 5.29 0.08 5.3208 
8 5.48 0.09 5.2378 

10 5.86 0.1 5.1611 
12 5.96 0.2 4.6124 
15 6.10 0.3 4.2792 
20 6.13 0.4 4.0525 
30 6.23 0.5 3.8867 
40 6.32 0.6 3.7593 
50 6.41 0.7 3.6576 
60 6.52 0.8 3.5743 
80 6.69 0.9 3.5045 

100 6.87 1.0 3.4451 
120 7.10 1.1 3.3939 
140 7.24 1.2 3.3492 
160 7.24 1.3 3.3099 
180 7.61 1.4 3.2750 

a -0.175 
/3 0.274 (hr) ° 175 
eo 2.590 mm 
K 0.419 (hr) ° 175 

where the last integral becomes negligible for large t (assuming e(t) as Laplace-transform- 

able). Hence ,  for tabulation purposes 

n-1 ~tti+l 
• ( s k ) = s ~  ~] e(t) e -Sk td t  ( l ~ < k ~ < p ) .  (4.5) 

i=O =ti 

For the evaluation of the integral (4.3) by means of (4.5), e(t) is assumed to have the 

quadratic polynomial  form 

e(t)  = do~ + dl~t + de~t 2 (t~_ t < t <<- ti, 1 <~ i <<- n) (4.6) 

on each partition interval. The quadratic interpolation polynomial doi + d l i t +  d2i t2 is 

through the three successive points (ti_l, el_l) , (ti, el) and (ti+l, ez+t) and the polynomial  
expression for e(t)  holds on the interval from [ti_l, ti+l] beginning with t o = 0 .  These 
interpolation polynomials are thereafter  used to evaluate the integrals in equations (4.5) 

which gave the ~(Sk)-Values (Table l(b)) .  Finally, the optimal parameter-values for e0, K, a 
and /3  are determined via minimization of the evaluation function 

k•_l ( eo K )2 
y(K, a ,  /3, e0) = * ( sk )  -- e0 1+4 • 

S k + /3 
(4.7) 

This optimization yielded the soil parameters  K, a,  /3 and k = F / ( e o L  ) (Table l(c)) used 

herein for the long range prediction (t---~ ~) of the pile behavior  of the S-2-L pile (Dawson 

City, 1973). The solid curve in Fig. 2 is the plotting of e(t)  by means of formula (4.1) (for 
these determined soil parameters  e0, K, a and /3) and agrees closely with the test results. 
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Fig. 2. Comparison of fractional exponential function, Eq. (4.1), with the measured pile displacements. Pile S-2-L, 
Dawson City. 
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Fig. 3. Asymptotic estimate, by Eq. (3.39), of pile displacements versus embedded pile length. Pile S-2-L, Dawson 
City. 
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5. Protracted pile behavior from field data 

The herein derived expressions for displacement, pressure and moments for a laterally 
loaded pile in permafrost are utilized to forecast the long term behavior (t---~ ~) from the 
available field data (Dawson City, 1973). At Dawson City the two methods of pile 
installations, namely the conventional "annual backfill" and the underdrill-drive technique 
were used. In the latter technique, a triple-wall reverse air flow system removes cuttings 
from a 44.45 cm bit attached to the pile tip, while the bit and pile advance by a hammer 
delivering 24.42 kN-m per blow through the two inner pipe strings. The 45.72 cm pile is 
forced into the 44.45 cm diameter hole. Both installation techniques for the test piles 
involved considerable lateral soil displacements. Probably soil-prestrain during pile installa- 
tion produced changes in soil-properties, which in turn affect pile-behavior and account for 
some of the discrepancies between field data and forecast. 

The asymptotic form of the solution ((3.39), (3.40) and (3.41)) was used to predict pile 
behavior from the cited experimental results. However, extrapolation beyond maximum 
testing time is somewhat delicate, because ground temperature variations and frozen soil 
consolidation occur over long time spans. These two factors induce significant deviations of 
predicted behavior from relatively short-term observations. 

Finally, asymptotically predicted displacements (3.39), reactions (3.40) and moments 
(3.41) along the pile length are illustrated in Figs 3, 4 and 5 and the respective asymptotic 
quantities t----~ ~ are calculated. 

-0.2 
0 i 

0.25 

E 

0 .50  

X 
L 

0.75 

1 

S O I L  REAC T I Oi'~, ( M N / m )  

0 0.,2 0.4 0.6 ! I I 0.8 I 

I I 
Fig. 4. Asymptotic estimate, by Eq. (3.40), of soil reaction versus embedded pile length. Pile S-2-L, Dawson City. 
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Fig. 5. Asymptotic estimate, by Eq. (3.41), of bending moment versus embedded pile length. Pile S-2-L, Dawson 
City. 

6. Conclusion 

The calculus of variation is an excellent tool for predicting laterally loaded pile behavior in 
permafrost. Its computational difficulties are significantly less than those of other methods of 
analysis-e.g,  finite difference and finite element methods. Moreover, the solutions are 
continuous on the entire domain, as opposed to mere piecewise continuity of the finite 
difference and finite element methods. Specifically, the mixed formulation via the Reissner 
Functional J in equation (3.8) guarantees the continuity of the primary variables of 
displacement, reaction and moment. This is generally false for the usual standard formula- 
tions, which assure continuity of displacement only, but not that of moment and reaction. 

Conclusions drawn from asymptotic expansions in variable t are only valid for very large t 
values because of the nature of asymptotic convergence- i.e. stationary creep. 
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